Page 236 - vol2
P. 236
Szakirodalom
[1.] J. E. Brider, A mathematical adventure, Mathematics Teaching 37 (1966)
17–21.
[2.] L. Carlitz and R. Scoville, A well-known problem, solution, Mathematics
Magazine 47 (1974) 290–291.
[3.] R. J. Cormier and R. B. Eggleton, Counting by correspondence,
Mathematics Magazine 49 (1976) 181–186.
[4.] R. E. Edwards, Problem 889, Mathematics Magazine 47 (1974) 46–47.
[5.] R. H. Garstang, Triangles in a triangle, Mathematical Gazette 70 (1986)
288–289.
[6.] F. Gerrish, How many triangles?, Mathematical Gazette 54 (1970) 241–246.
[7.] J. Halsall, An interesting series, Mathematical Gazette 46 (1962) 55–56.
[8.] C. L. Hamberg and T. M. Green, An application of triangular numbers,
Mathematics Teacher 60 (1967) 339–342.
[9.] Mogens Esrom Larsen, The Eternal Triangle – A History of a Counting
Problem, Coll. J. Math. 20, No. 5 November (1989) 370–384.
[10.] B. W. Martin, How many triangles?, Mathematical Gazette 55 (1971) 440–
441.
[11.] B. D. Mastrantone, How many triangles?, Mathematical Gazette 55 (1971)
438–440.
[12.] J. W. Moon and N. J. Pullman, The number of triangles in a triangular
lattice, Delta 3 (1973) 28–31.
[13.] B. Prielipp and N. J. Kuenzi, A well-known problem, comment,
Mathematics Magazine 47 (1974) 290.
[14.] N. J. A. Sloane, A Handbook of Integer Sequences, Academic, New York,
1973, Sequence #1569.
[15.] Celia Wells, Numbers of triangles, Mathematics Teaching 54 (1971) 27–
29.
[16] Mircea Ganga: Teme si probleme de matematica, Editura Tehnica,
Bucuresti-1991 (117.- 123. oldal)
[17] L. Panaitopol és társai: Egyenlőtlenségek (magyarra fordította András
Szilárd), Gil Könyvkiadó, Zilah, 1996
[3] Sándor József: Geometriai egyenlőtlenségek, Dacia Könyvkiadó, Kolozsvár,
1988
[18] Marin Chirciu: Inegalitati trigonometrice, de la initiere la performanta,
Editure Paralela 45, 2016
[19] Csapó Hajnalka, András Szilárd: Matematika M1, Tankönyv a XI.
osztály számára, Corvin Kiadó, Déva, 2006.
236