Page 236 - vol2
P. 236

Szakirodalom


            [1.] J. E. Brider, A mathematical adventure, Mathematics Teaching 37 (1966)
            17–21.
            [2.] L. Carlitz and R. Scoville, A well-known problem, solution, Mathematics
            Magazine 47 (1974) 290–291.
            [3.] R. J. Cormier and R. B. Eggleton, Counting by correspondence,
            Mathematics Magazine 49 (1976) 181–186.
            [4.] R. E. Edwards, Problem 889, Mathematics Magazine 47 (1974) 46–47.
            [5.] R. H. Garstang, Triangles in a triangle, Mathematical Gazette 70 (1986)
            288–289.
            [6.] F. Gerrish, How many triangles?, Mathematical Gazette 54 (1970) 241–246.
            [7.] J. Halsall, An interesting series, Mathematical Gazette 46 (1962) 55–56.
            [8.] C. L. Hamberg and T. M. Green, An application of triangular numbers,
            Mathematics Teacher 60 (1967) 339–342.
            [9.] Mogens Esrom Larsen, The Eternal Triangle – A History of a Counting
            Problem, Coll. J. Math. 20, No. 5 November (1989) 370–384.
            [10.] B. W. Martin, How many triangles?, Mathematical Gazette 55 (1971) 440–
            441.
            [11.] B. D. Mastrantone, How many triangles?, Mathematical Gazette 55 (1971)
            438–440.
            [12.] J. W. Moon and N. J. Pullman, The number of triangles in a triangular
            lattice, Delta 3 (1973) 28–31.
            [13.] B. Prielipp and N. J. Kuenzi, A well-known problem, comment,
            Mathematics Magazine 47 (1974) 290.
            [14.] N. J. A. Sloane, A Handbook of Integer Sequences, Academic, New York,
            1973, Sequence #1569.
            [15.] Celia Wells, Numbers of triangles, Mathematics Teaching 54 (1971) 27–
            29.
            [16] Mircea Ganga: Teme si probleme de matematica, Editura Tehnica,
            Bucuresti-1991 (117.- 123. oldal)
            [17] L. Panaitopol és társai: Egyenlőtlenségek (magyarra fordította András
            Szilárd), Gil Könyvkiadó, Zilah, 1996
            [3] Sándor József: Geometriai egyenlőtlenségek, Dacia Könyvkiadó, Kolozsvár,
            1988
            [18] Marin Chirciu: Inegalitati trigonometrice, de la initiere la performanta,
            Editure Paralela 45, 2016
            [19] Csapó Hajnalka, András Szilárd: Matematika M1, Tankönyv a XI.
            osztály számára, Corvin Kiadó, Déva, 2006.




                                              236
   231   232   233   234   235   236   237   238   239   240   241